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Abstract
TDMPC-2 is a model-based reinforcement learn-
ing algorithm on continuous action control. In this
work we present TOLD-ZERO, a generalization
of the original paper that specializes in discrete
action tasks and uses Monte-Carlo Tree Search as
a local trajectory optimization method. We will
try to argue the role of planning in model-based
RL in both continuous and discrete action tasks,
specifically by bench-marking algorithms with or
without planning on the LightZero Environment.
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1. Introduction
Model-based Reinforcement Learning (Hamrick et al.,
2021), featuring combinations of learning and planning in
a variety of ways, has seen a lot of success in recent years.
Significant advances have been made in many games on
discrete and continuous action spaces where the artificial
intelligent agent beats world-class human players. A lot of
these algorithms, however, such as DQN (Mnih et al., 2013)
and SAC (Haarnoja et al., 2018), have poor data efficiency
and face challenges when dealing with a diverse range of
tasks.

One family of algorithm that have shown great capabilities
in solving complex discrete-action games with deep MCTS
search is the Zeros starting from MuZero(Schrittwieser et al.,
2020). From AlphaZero (Silver et al., 2017), EfficientZero
(Ye et al., 2021), to Sampled EfficientZero (Wang et al.,
2024), Gumbel MuZero (Kao et al., 2022), and Stochastic
MuZero (Antonoglou et al., 2022). They perform a wide
variety of tasks such as Go, CartPole, Pendulum, and Atari.
Although AlphaZero and MuZero only work for discrete
tasks, Sampled EfficientZero also works for continuous
tasks by sampling actions.

As illustrated in Figure 1, all of the MBRL algorithms con-
sist of a world model and a local trajectory optimization
algorithm that serves as a policy prior and a target for learn-
ing. They can also be classified into decision time planning,
which refers to using the model to select a policy, and back-
ground planning, which refers to using the model to update
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Figure 1. Model-based approximate policy iteration.

a policy. The role of policy search is key to constructing tar-
gets in policy learning, and for generating more informative
data distribution (Hamrick et al., 2021).

The Zero-family algorithms use variations of Monte-Carlo
Tree Search to as a policy guidance, while in TDMPC-2
(Hansen et al., 2024), MPPI (Model Predictive Path Integral)
plays this local trajectory optimization role. (Hamrick et al.,
2021) investigates the role of mcts in Muzero algorithm. A
natural question to ask is, can we experiment on the role of
lanning with MPPI for TD-MPC2?

1.1. On the role of planning in tdmpc-2

In the first part of our project, we benchmark TD-MPC2
by running it on Pendulum, Bipedal Walker, and Dog Run
with or without MPPI. We also did ablations by changing
the horizon lengthH and removing the terminal value func-
tion. We finally compared the benchmarked performance
of Sampled EfficientZero and TD-MPC2 on Pendulum. On
the other hand, TD-MPC2 performs very well on a wide
range of complex continuous control tasks, but making it
work for discrete action spaces is still an open problem.
However, given the comparative data efficiency and high
performance of MCTS, we are interested in incorporating
the TOLD world model in TD-MPC2 with MCTS.

1.2. TOLD-ZERO

We thus try to generalize TDMPC-2 to discrete action space
tasks. We do this to ultimately achieve a cross-task ability
of playing games like Atari. The key difference will be its
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ability to solve multiple tasks with one set of parameters
and we’ve found that the convergence rate of TOLD-ZERO
on tasks such as Cartpole is faster than all the Zero-family
algorithms.

2. Related Work
For the main sections of our project, which are to investigate
the significance of MPPI in TD-MPC2 and to generalize
TD-MPC2 to discrete action spaces, we need to reprsent two
pieces of work that are crucial for readers’ understanding.

The first one is TD-MPC2, which stands for Temporal Dif-
ference Learning for Model Predictive Control. It utilizes
an MPC planning algorithm that takes into account short
term action planning trajectory and long term terminal value
function.

The other is MuZero, which incorporates Monte Carlo Tree
Search in model-based reinforcement learning for discrete
action space tasks. This serves as a potentially powerful
planning algorithm which shows better data efficiency and
performance.

2.1. TD-MPC2

Figure 2. TD-MPC2 TOLD Model Architecture

As shown in Algorithm 2.1, for a given horizon length,
MPPI (Model Predictive Path Integral) (Hansen et al., 2022)
will sample actions until the end of that trajectory, which is
a planning in the short term. It also takes into account plan-
ning in the long term by adding a terminal value function
into

ϕΓ ≜ EΓ

[
γHQθ(zH ,aH) +

H−1∑
t=0

γtRθ(zt,at)

]
, (1)

It will then update the mean and standard deviation from
which to sample future actions, using the following equa-
tions:

Algorithm 1 TD-MPC (inference)
Require: θ : learned network parameters

µ0, σ0: initial parameters for N
N,Nπ: num sample/policy trajectories
st, H: current state, rollout horizon

1: Encode state zt ← hθ(st) ◁ Assuming TOLD model
2: for each iteration j = 1..J do
3: Sample N traj. of len. H from N (µj−1, (σj−1)2I)
4: Sample Nπ traj. of length H using πθ, dθ

// Estimate trajectory returns ϕΓ using dθ, Rθ, Qθ,
starting from zt and initially letting ϕΓ = 0:

5: for all N +Nπ trajectories (at,at+1, . . . ,at+H) do
6: for step t = 0..H − 1 do
7: ϕΓ = ϕΓ + γtRθ(zt,at) ◁ Reward
8: zt+1 ← dθ(zt,at) ◁ Latent transition
9: end for

10: ϕΓ = ϕΓ+γHQθ(zH ,aH) ◁ Terminal value
11: end for // Update parameters µ, σ for next iteration:
12: µj , σj = Equation 2
13: end for
14: return a ∼ N (µJ , (σJ)2I)

µj =

∑k
i=1 ΩiΓ

⋆
i∑k

i=1 Ωi

, σj =

√√√√∑k
i=1 Ωi(Γ⋆

i − µj)2∑k
i=1 Ωi

, (2)

2.2. MuZero

MuZero (Schrittwieser et al., 2020) is one of the MBRL
(Model Based Reinforcement Learning) algorithms that in-
corporates MTCS (Monte Carlo Tree Search).

It consists of four components: model, search, acting, and
learning. (Hamrick et al., 2021)

Within the MTCS framework, MuZero learns three func-
tions at the same time. They are the learned policy function
which provides a policy for selecting action at each state;
the learned value function, which approximates the value at
each state; and the immediate reward function.

2.2.1. MODEL

MuZero plans in a hidden state. The model µθ is
parametrized with the parameter θ. At each time step, the
model is represented by a combination of three functions: a
representation function, a dynamics function, and a predic-
tion function.

The representation function encodes past observations.

The dynamics function predicts an immediate reward rk and
an internal state sk based on past observations and current
action.
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The prediction function predicts a policy and generates a
hidden state that will be pased in the model.

This part is illustrated in part B of Figure 3.

2.2.2. SEARCH

Search for MuZero involves the MCTS. Beginning at a root
node s0, a simulation is carried out based on a search policy
until a previously unexplored node is reached. The search
policy also leverages exploration and exploration, and picks
actions based on the number of counts that this node has
been reached. The value and reward received at the last
node will then propagate backwards to update the value and
reward of the root.

This is illustrated in part A of Figure 3.

2.2.3. ACTING

After Search, an action is sampled from the search policy.
After the reward is received, we will put the observation,
state, reward, and action into a replay buffer.

2.2.4. LEARNING

The model is trained jointly to predict the reward, value,
and policy for future timesteps. MuZero will not unneces-
sarily predict future hidden states and observations, so this
increases data efficiency for such a model-based reinforce-
ment learning method.

Figure 3. Planning, acting, and training in MuZero

3. Benchmarking
LightZero(Niu et al., 2023) is a unified benchmarking frame-
work for the ”Zero” family algorithms. These algorithms
incorporate MCTS (Monte Carlo Tree Search) with rein-
forcement learning, and can work across a variety of task
on disrete and continuous actions spaces.

TD-MPC2 (Hansen et al., 2024), in comparison, uses MPPI
(Model Predictive Path Integral) instead of MCTS. As one
of the MPC (Model Predictive Control) algorithms, MPPI

involves a horizon and a terminal value function, which thus
plans differently from MCTS. In addition, it works only for
tasks on continuous action spaces.

In this section, we will present the benchmarking of TD-
MPC2 on LightZero framework on continuous tasks.

3.1. Methodology

3.1.1. ENVIRONMENT

The LightZero framework uses the Ding Wrapper, while
the TD-MPC2 tasks are in the Open-AI gym environments.
We hereby adaped TD-MPC2 to work in Ding-compatible
environments in order to compare its performance with
Zero-family algorithms.

3.1.2. TASKS

For benchmarking, we mainly focused on three of the tasks
on continuous action spaces: 1) Pendulum; 2) Bipedal
Walker; 3) Dog Run (Mujoco). All three are very classic
planning tasks used to implement benchmarking.

3.1.3. ABLATIONS

In terms of ablations, we focused on three experiments.

The first one is comparing with and without MPPI. This is
carried out on Pendulum, Bipedal Walker, and Dog Run.

The second ablation is comparing different horizon lengths,
while also taking out the terminal value function from the
bellman equation. This is only run on the Pendulum task.

The third ablation is the comparison between TD-MPC2 and
Sampled EfficientZero on the continuous task of Pendulum.

3.2. Results

3.2.1. MPPI

As shown in top left of Figure 3, the task of Pendulum
converges at around 0.0026 million environmental steps
both when MPPI is and is not used.

When the trajectory is planned using MPPI, the returns
will reach values closer to 0, but overall in terms of the
stability of returns after convergence, the performance of
TD-MPC2 on the task of Pendulum with or without MPPI
is very similar.

Similar trends can be observed in the top right and bottom
left of Figure 3, which are run on Bipedal Walker and Dog
Run, respectively.

Therefore, we’ve shown that MPPI is not a very well per-
forming planning algorithm for complex continuous control
tasks. The reason why TD-MPC2 has high performance can
be attributed to other reasons which will be analyzed later.
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Figure 4. The first three plots are the benchmarking of TD-MPC2 with or without MPPI on Pendulum (top left), Bipedal Walker (top
right), and Dog Run (bottom left), respectively. The last plot (bottom right) is the benchmarking of TD-MPC2 with different horizon
lengths and with or without terminal value function Q.

As shown in the bottom right of Figure 3, we can see that
when horizon is very small, i.e. 3, and we don’t consider
the terminal value condition, then the performance is very
unstable and the agent fails to converge on an optimal policy.
Otherwise, the difference between whether the terminal
value condition is considered or not doesn’t influence the
ultimate convergence performance.

Given that the terminal value function is an important part of
the MPPI algorithm, this suggests again that MPPI doesn’t
improve performance much.

3.2.2. SAMPLED EFFICIENTZERO VS TD-MPC2

From Figure B, the blue curve corresponds to the perfor-
mance of TD-MPC2 without MPPI on Pendulum, and the
red curve corresponds to the performance of Sampled Effi-
cientZero on Pendulum.

We can see that TD-MPC2 converges a lot faster to a re-
turn very close to zero even without incorporating MPPI
algorithm.

This is very likely due to the large number of trainable
parameters in the TD-MPC2 model.

Figure 5. Comparison of benchmarking performance of Sampled
EfficientZero and TD-MPC2 on Pendulum. The shaded areas
correspond to one standard deviation above and below average
returns.
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4. TOLD-ZERO
TOLD-ZERO is a model-based RL algorithm that gener-
alize TDMPC-2(Hansen et al., 2024) to discrete action
space. Our approach integrates the Task-Oriented La-
tent Dynamics(TOLD) model as a world model, with the
MCTS(Schrittwieser et al., 2019) search algorithm. In the
following sections, we will first provide an overview of the
TOLD model. We will change the policy update rule and
policy network to adapt to discrete action tasks. An integra-
tion of MCTS as a local trajectory optimization method is
shown to be necessary later.

4.1. Task-Oriented Latent Dynamics model

In this section, we provide a brief introduction to the Task-
Oriented Latent Dynamics (TOLD) model, focusing par-
ticularly on components relevant to adapting it for discrete
action settings.

Task-Oriented Latent Dynamics(Hansen et al., 2022) is de-
signed to only model elements of the environment that are
predictive of reward. Compare with other model such as
Dreamer-V3(Hafner et al., 2023) attempting to model the
environment itself, TOLD model could focus more on the
reward-related information without the distractions from the
image details.

Components: TOLD model consists of five components
hθ, dθ, Rθ, Qθ, πθ and predict the following:

Representation: zt = hθ(st)

Latent dynamics: zt+1 = dθ(zt, at)

Reward: r′t = Rθ(zt, at)

Value: q′t = Qθ(zt, at)

Policy: a′t ∼ πθ(zt)

We optimize our policy by maximizing the following
equation. It is similar to one of SAC’s in the sense of it
incorporates entropy.

Policy objective.(Hansen et al., 2024) The policy prior
p is a stochastic maximum entropy policy that learns to
maximize the objective

Lp(θ) := E(s,a)∼B

[
H∑
t=0

λt (Qθ(zt, p(zt))− βH(p(·|zt)))

]
zt+1 = dθ(zt, at), z0 = hθ(s0)

Algorithm: The TOLD training algorithm in TDMPC can
be found in Appendix A. (Hansen et al., 2022)

4.2. Task-Oriented Latent Dynamics model in discrete
action settings

We now derive a discrete action version of the above TOLD
model. One thing to note is that policy objective, full objec-
tive in TDMPC-2 still holds in discrete action settings. We
need to make the following two important changes to the
process of optimising these objective functions:

1. Policy Representation: Rather than output mean
and covariance, the policy network is changed to out-
put probability distribution of all possible actions by
adding a softmax layer. The policy function changes
from π : S → µ, σ to π : S → [0, 1]A

2. Policy Update: Calculating entropy in the policy
loss function should also be different. The entropy
H(π(·|st)) in a discrete action space is calculated us-
ing the probabilities from the softmax output:

H(π(·|st)) = −
∑
a

π(a|st) log π(a|st)

Then plug in entropy term to policy objective, we can
derive the new policy objective.

4.3. A Bare-TOLD in discrete action result

We reimplement TOLD model in jax and adapt the above
changes. We then run the algorithm on discrete action envi-
ronment Cartpole-v0. We obtain the following result:

Figure 6. This figure shows the performance of the TOLD model
in the Cartpole-v0 environment. We observe that the model is very
unstable and reward does not behave as expected.

From the graph, we can conclude the following: The policy
implemented in the TOLD model struggles with stability
in the discrete action space and have minimal improvement
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in actual performance over time. This suggests that while
the policy is capable of generating actions, these actions
are not effectively leading to the maximization of long-term
rewards. There are potential issuses in policy convergence,
which could be due to inadequate exploration, the sensitivity
of the policy gradient to stochasticity in the environment, or
possibly suboptimal hyperparameter settings.

4.4. MCTS as a Policy Improvement Tool

One feature of Monte Carlo Tree Search based algorithm
is its ability to perform “precise and sophisticated looka-
head”. From (Hamrick et al., 2021), we can conclude that
this lookahead support learning stronger policies. Therefore,
we incorporate Muzero(Schrittwieser et al., 2019) planning
stage to TOLD model, which serves as a policy improve-
ment tool.

As detailed in Section 2, we know Muzero has four compo-
nents: Model, Search, Acting, Learning. In our adaptation,
we only incorporate the Search and Acting components
into the TOLD model. This selective integration allows us
to enhance the policy network without altering the TOLD
model’s internal structure.

4.5. TOLD-ZERO result

In this section, we present the performance of the TOLD-
ZERO model on discrete action environments, specifically
focusing on the Cartpole-v0 environment. The results are
summarized in Figure 7, which tracks the model’s learning
progress over 1200 steps.

Figure 7. This figure shows the performance of the TOLD model in
the Cartpole-v0 environment. We observe that the model converge
at approximate 800 steps.

Conclusion:

1. It’s clear that the returns increase significantly and tend
to stabilize around 800 steps, indicating that the model
is achieving higher scores in the task as it learns.

2. The loss line, on the other hand, starts relatively low
and slightly decreases as training progresses. This
pattern indicates that the model is consistently refining
its predictions and minimizing discrepancies between
its predictions and the actual outcomes.

Therefore, we can conclude that the performance of the
TOLD-ZERO model in the Cartpole-v0 environment is quite
promising. We also show result of Cartpole-v1 in Appendix
A, which verify our conclusion.

5. Conclusion
In this work, we explored MBRL (Model-Based Reinforce-
ment Learning) and planning algorithms based on MTCS
(Monte Carlo Tree Search).

First, we investigated the value of MPPI by benchmarking
TD-MPC2 on LightZero framework continuous tasks. By
doing ablations with and without MPPI, changing horizon
and removing terminal value function, as well as comparing
with Sampled EfficientZero, we’ve shown that MPPI doesn’t
necessarily improve the performance of MPC on relatively
simple continuous tasks such as Pendulum, Bipedal Walker,
and Dog Run.

Next, we present TOLD-ZERO, which is our generaliza-
tion of TD-MPC2 to discrete action space by combining
MCTS with TOLD world model. Our new algorithm has
been proved to result in convergence on Cartpole within
25 episodes, which is better than all the Zero-family algo-
rithms.

6. Future Directions
The future direction of our work is gonna be two-fold. First
regarding our investigation on the role of MPPI on tdmpc-
2, we will have to perform experiments on more complex
environments like dm-control and mujoco to get a better un-
derstanding in more complex environments. We suspect that
the role of MPPI will get more important in more complex
tasks. Secondly, TOLD-ZERO is proven to work on Cart-
pole environments without any hyper parameter tuning, but
we are still left to do more complex tasks like Vision-based
Cartpole, Atari, or Go. The latter was especially challenging
because of the computation power it requires.
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A. TOLD algorithm
This algorithm is taken from (Hansen et al., 2022)

Algorithm 2 TOLD (training)
Require: θ, θ−: randomly initialized network parameters η, τ, λ, β: learning rate, coefficients, buffer

1: while not tired do
2: // Collect episode with TD-MPC from s0 ∼ p0:
3: for step t = 0 T do
4: at ∼ Πθ(·|hθ(st))
5: (st+1, rt) ∼ T (·|st, at), R(·|st, at) {Step environment}
6: B ← B ∪ {(st, at, rt, st+1)} {Add to buffer}
7: end for
8: // Update TOLD using collected data in B:
9: for num updates per episode do

10: {(st, at, rt, st+1)t:t+H} ∼ B {Sample trajectory}
11: zt = hθ(st) {Encode first observation}
12: J = 0 {Initialize J for loss accumulation}
13: for i = t t+H do
14: r̃i = Rθ(zi, ai) {Equation 8}
15: q̃i = Qθ(zi, ai) {Equation 9}
16: zi+1 = dθ(zi, ai) {Equation 10}
17: ãi = πθ(zi) {Equation 11}
18: J ← J + λiC̃(zi+1, r̃i, q̃i, ãi) {Equation 7}
19: end for
20: θ ← θ − 1

H η∇θJ {Update online network}
21: θ− ← (1− τ)θ− + τθ {Update target network}
22: end for
23: end while
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B. Cartpole-v1 result
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C. TOLD-ZERO implementation details

Table 1. Configuration Parameters
Parameter Value
Seed 0
Max Steps 250,000

Encoder
Encoder Dim 256
Number of Encoder Layers 2

World Model
MLP Dim 512
Latent Dim 512
Value Dropout 0.01
Number of Value Nets 5
Number of Bins 101
Symlog Min -10
Symlog Max 10
Simnorm Dim 8
Learning Rate 3× 10−4

Encoder Learning Rate 1× 10−4

Predict Continues False
Data Type bfloat16
Tabulate False

TDMPC2
MPC False
MCTS False
Horizon 3
MPPI Iterations 6
Population Size 512
Policy Prior Samples 32
Number of Elites 64
Min Plan Std 0.05
Max Plan Std 2
Temperature 0.5
Batch Size 256
Discount 0.99
Rho 0.5
Consistency Coefficient 20
Reward Coefficient 0.1
Continue Coefficient 0.1
Value Coefficient 0.1
Entropy Coefficient 1× 10−3

Tau 0.01
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