Bilevel Policy Optimization with Nystrom Hypergradients

Arjun Prakash’

Naicheng He™ Denizalp Goktas

Amy Greenwald

Questions

How can we improve actor-critic algorithms by taking into account
the interplay between the actor and critic? How can we efficiently
and accuratley compute hypergradients?

Abstract

Actor-critic (AC) can be cast as a bilevel problem. We propose BLPO, which
nests the critic and updates the actor with a Nystrom hypergradient that
accounts for critic adaptation. Under a linear critic, we prove polynomial-
time convergence to a local strong-Stackelberg equilibrium. Empirically, BLPO
matches or outperforms PPO across discrete and continuous control tasks.

Introduction

Given functions f: R" x R — R and g : R™ — R, a(n unconstrained) bilevel
opmization problem can be formulated as follows:

min ®(x) = flx,y*(x)) subject to y*(x) € V., = arg min g.(y) (1)
xclR? yeR™

A solution to a bilevel optimization problem (also known as a Stackelberg equi-
librium) comprises a pair (x*, y*) € (R",R™) s.t. & optimizes ®(x) subject to
the constraint that y* optimizes g.(y).

Hypergradient

To calculate the gradient of the leader, we must differentiate through the fol-
lower’s best response:

Vi@ y'(x)) = Vo fl,y) + Vy'(x)Vy flz, y)
Which using the IFT becomes:

V' (@) Vyf(@,y) = = Vay9a(¥) (Vi 02(y) ' Vy fla, y) 2)
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Jacobian vector product

The Nystrom method allows us to approximate the IHVP v by:

v = (Hq — @I)_lvyf(a:, )

where
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https://github.com/Arnie-He/BLPO
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Figure 1. In continuous control tasks, BLPO either outperforms PPO or performs comparably.

Runtime

Vanilla Actor-Critc

AC algorithms like PPO [3] and SAC [2] update the actor and critic simultane-
ously, meaning each updates its network parameters during iteration ¢ + 1,
given the other’s parameters at iteration . Simultaneous updating corre-
sponds to a mutual better-response dynamic, which, in the event of conver-
gence, would find a solution to the following simultaneous-move game:

arg min —.J (0, w) arg min L(w, 0) (3)
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However, simultaneous training dynamics are known to cycle [1].

BLPO
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Figure 2. Runtimes relative to PPO. The The Nystrom method is faster than CG (max 50 iters) and preconditioned variants. All methods achieve
comparable performance.
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Partially inspired by [4], we recognize the fact that AC algorithms should be
bilevel, and define the critic’s loss function as a parameterized function of the
actor’s policy:

jin d(0) =—-J(0,w*(0)) subject to w*(0) € arg nin Lo(w) (4)

Algorithm 1 BLPO with Nystrom Hypergradients
fork=0,1,...., Kg —1do

g

ford=0,1,..., K, —1do

Ll

W@t (D —p V., Lo (w®) {Update critic}
end for
wk)  (Eo)

V40— (V2 Lo (w®))"1V,, J(0%), w)) {Estimate the IHVP via the Nystrom method}
Vo ) « Vo J(0F) wk)) — vy, LOF), w®))D , - {Calculate hypergradient}

Okt « 9F) 4 neVeJF) {Update actor}
end for
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